Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence Crossover is Provably Essential for the Ising Model on Trees
نویسنده
چکیده
Due to experimental evidence it is incontestable that crossover is essential for some fitness functions. However, theoretical results without assumptions are difficult. So-called real royal road functions are known where crossover is proved to be essential, i. e., mutation-based algorithms have an exponential expected runtime while the expected runtime of a genetic algorithm is polynomially bounded. However, these functions are artificial and have been designed in such a way that crossover is essential only at the very end (or at other well-specified points) of the optimization process. Here, a more natural fitness function based on a generalized Ising model is presented where crossover is essential throughout the whole optimization process. Mutation-based algorithms such as (μ+λ) EAs with constant population size are proved to have an exponential expected runtime while the expected runtime of a simple genetic algorithm with population size 2 and fitness sharing is polynomially bounded.
منابع مشابه
Sonderforschungsbereich 531: Design und Management komplexer Prozesse und Systeme mit Methoden der Computational Intelligence
متن کامل
Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence Pareto Set and EMOA Bahavior for Simple Multimodal Multiobjective Functions
Recent research on evolutionary multiobjective optimization has mainly focused on Pareto-fronts. However, we state that proper behavior of the utilized algorithms in decision/search space is necessary for obtaining good results if multimodal objective functions are concerned. Therefore, it makes sense to observe the development of Pareto-sets as well. We do so on a simple, configurable problem,...
متن کاملDesign und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions
Recent research on evolutionary multiobjective optimization has mainly focused on Pareto-fronts. However, we state that proper behavior of the utilized algorithms in decision/search space is necessary for obtaining good results if multimodal objective functions are concerned. Therefore, it makes sense to observe the development of Pareto-sets as well. We do so on a simple, configurable problem,...
متن کاملDesign und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence TAKEOVER TIME IN PARALLEL POPULATIONS WITH MIGRATION
The term takeover time regarding selection methods used in evolutionary algorithms denotes the (expected) number of iterations of the selection method until the entire population consists of copies of the best individual, provided that the initial population consists of a single copy of the best individual whereas the remaining individuals are worse. Here, this notion is extended to parallel su...
متن کاملDesign und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence On the Analysis of the (1+1) Memetic Algorithm
Memetic algorithms are evolutionary algorithms incorporating local search to increase exploitation. This hybridization has been fruitful in countless applications. However, theory on memetic algorithms is still in its infancy. Here, we introduce a simple memetic algorithm, the (1+1) Memetic Algorithm ((1+1) MA), working with a population size of 1 and no crossover. We compare it with the well-k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005